Nonlinear anti-commuting maps of strictly triangular matrix Lie algebras
نویسندگان
چکیده
منابع مشابه
Non-additive Lie centralizer of infinite strictly upper triangular matrices
Let $mathcal{F}$ be an field of zero characteristic and $N_{infty}(mathcal{F})$ be the algebra of infinite strictly upper triangular matrices with entries in $mathcal{F}$, and $f:N_{infty}(mathcal{F})rightarrow N_{infty}(mathcal{F})$ be a non-additive Lie centralizer of $N_{infty }(mathcal{F})$; that is, a map satisfying that $f([X,Y])=[f(X),Y]$ for all $X,Yin N_{infty}(mathcal{F})...
متن کاملInvariants of Triangular Lie Algebras
Triangular Lie algebras are the Lie algebras which can be faithfully represented by triangular matrices of any finite size over the real/complex number field. In the paper invariants (‘generalized Casimir operators’) are found for three classes of Lie algebras, namely those which are either strictly or non-strictly triangular, and for so called special upper triangular Lie algebras. Algebraic a...
متن کاملElementary Maps on Triangular Algebras
In this note we prove that elementary surjective maps on triangular algebras are automatically additive. The study of elementary maps was initiated by Brešar and Šerml. Following ([1]), elementary maps are defined as follows. Definition 1. Let R and R be two rings. Suppose that M : R → R and M : R → R are two maps. Call the ordered pair (M,M) an elementary map of R×R if
متن کاملAnti fuzzy Lie ideals of Lie algebras
In this paper we apply the Biswas's idea of anti fuzzy subgroups to Lie ideals of Lie algebras. We introduce the notion of anti fuzzy ideals in Lie algebras and investigate some of their properties.
متن کاملSolvable Lie algebras with triangular nilradicals
All finite-dimensional indecomposable solvable Lie algebras L(n, f), having the triangular algebra T (n) as their nilradical, are constructed. The number of nonnilpotent elements f in L(n, f) satisfies 1 ≤ f ≤ n− 1 and the dimension of the Lie algebra is dim L(n, f) = f + 1 2 n(n − 1).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Operators and Matrices
سال: 2019
ISSN: 1846-3886
DOI: 10.7153/oam-2019-13-20